zone precipitated continuously during the reaction. It was recrystallized from dimethylformamide.

Phenanthrene Ozonide.—The ozonide was obtained in 85% yield by pouring the acetic acid solution into very cold water. Infrequently the white colloid that first formed failed to agglutinate to yield the granular product. Vacuum removal of some of the solvent avoided this difficulty. All attempts to remove all the water from the product obtained in this way failed. However, a dry product was obtained from the chloroform solution. Most of the solvent was removed under vacuum. The concentrate was poured into absolute methanol which had been cooled in a Dry Ice-bath and the precipitate was filtered immediately, washed with more cold methanol and dried in a vacuum desiccator.

The precipitated ozonide is a white, amorphous powder that easily acquires a static charge. It burns fiercely, but is stable to shock. It softens and melts (65-90°) like a glass and, unlike most ozonides, is soluble in cold ether. Once precipitated it is stable in water and dilute acid suspension for weeks, but it decomposes in dry air.

The infrared spectra of the ozonide from chloroform and from acetic acid are essentially superimposable.

Anal. Calcd. for $C_{14}H_{10}O_3$: C, 73.33; H, 4.46; mol. wt., 226. Found: C, 73.34; H, 4.61; mol. wt. (Rast using dl-camphor), 223.

Ozonide Decomposition. (a) Catalytic Reduction.—Using the method of Fisher²² but at room temperature, the theoretical amount of hydrogen was absorbed. A quantitative determination of the biphenyl-2,2'-dialdehyde thus formed²³ showed a yield of 57.5%. This low yield is understandable in the light of Fisher's experience.²²
(b) Hydrolysis to Biphenyl-2,2'-dialdehyde.—The acetic

acid solution of the ozonide was poured into four times its volume of water and the resulting colloid was let stand for two days. At the end of that time a 51% yield of the aldehyde was filtered off; m.p. 60-61°. The derivatives listed in Table I were prepared in the usual way. The pnitrophenylhydrazone was purified by chromatography in a dioxane solution on activated alumina. The column was developed with 10% ethanol in dioxane, extruded and sectioned. The lower dark red band was eluted with hot di-

oxane and the material recrystallized from dioxane-water.
(c) Oxidation to 2,2'-Diphenic Acid.—The filtrate from the above preparation of the dialdehyde gave, on warming with potassium permanganate, a 25.5% yield of diphenic acid, m.p. 229-230°. The ozonide itself was oxidized with alkaline permanganate in the cold to an acid, m.p. 229-231°;

mixed m.p. with an authentic sample of diphenic acid 229–231°; p-nitrobenzyl ester m.p. 184–185° (183°).²⁴

Alternate Preparation of 2,2'-Biphenyldialdehyde Bis-(2,4-dinitrophenylhydrazone).—The method of Weygand¹¹ was used; m.p. of this 2,4-dinitrophenylhydrazone 290°; mixed m.p. with product from ozonolysis 290°. For this synthesis the N,N'-diphenyl-N,N'-dimethyl-2,2'-biphenamide was prepared according to the method of Rapson and Shuttleworth. The product melted at 166–167° compared to the 160–162° reported by Weygand.

Anal. Caled for $C_{28}H_{24}N_2O_2$: C, 79.97; H, 5.75. Found: C, 80.06; H, 5.65.

Glyoxal Determination.—A stock solution was prepared as follows. To 2 ml. of sulfuric acid and 0.8 g. of 2,4-dinitropinenylhydrazine was gradually added 8 ml. of water. To this solution were added 50 ml. of acetic acid and 11 ml. of water. Test-tubes were prepared with 2 ml. of the stock solution diluted with 2 ml. of water. The mixture to be tested was distilled, 2 ml. of the distillate being run directly into the test-tube. Usually three samples were taken. Eleven ml. of water then was added and the mixture heated to boiling. If glyoxal were present the solution became cloudy almost immediately. On standing a floculent precipitate formed and floated to the top as a large orange ball. The dry weight of this apparently large mass was negligible. In the control experiments the m.p. agreed with the literature value of 328° for the glyoxal derivative.

For the actual test on phenanthrene ozonide, the ozonolysis mixture was first reduced catalytically as noted above, and then directly distilled into the test-tubes. No precipitate was formed.

(24) T. I. Kelly and M. Segura, This Journal, 56, 2497 (1934). (25) W. S. Rapson and R. G. Shuttleworth, J. Chem. Soc., 487 (1941).

New York 58, N. Y.

[Contribution No. 1990 from the Gates and Crellin Laboratories of Chemistry, California Institute of Technology]

On the cis Forms of Some Biphenylene Derivatives of Butadiene and Hexatriene

By Eugene F. Magoon and L. Zechmeister RECEIVED MAY 26, 1955

All theoretically possible cis forms of 1,6-di-biphenylenehexatriene, 1-biphenylene-4-phenylbutadiene and 1-biphenylene-6-phenylhexatriene were prepared. They were characterized on the basis of their chromatographic and spectroscopic behavior as well as of their relative stabilities. The observations were in general agreement with those made in the series of α,ω -diphenyl-polyenes and symmetrical polyene-azines.

In the present paper we describe the stereochemical behavior of three compounds so far known only in the trans form. They are characterized by bulky end groups attached to short unsaturated systems. Di-biphenylenehexatriene has been selected because its only cis isomer represents a sterically "unhindered" type (Fig. 1), whereas biphenylenephenylbutadiene yields a "hindered" cis form (Fig. 2). Finally, biphenylenephenylhexatriene may assume the cis configurations B-D (Fig. 3), including a hindered monocis, an unhindered monocis and a hinderedunhindered dicis isomer. As observed earlier in the α,ω -diphenylpolyene¹ and symmetrical polyene-

(1) A. Sandoval and L. Zechmeister, This Journal, 69, 553 (1947); J. H. Pinckard, B. Wille and L. Zechmeister, ibid., 70, 1937 (1948); K. Lunde and L. Zechmeister, ibid., 76, 2308 (1954); L. Zechmeister

azine² series, when a terminal double bond of the open chain undergoes trans -> cis rearrangement, a spatial conflict arises between a hydrogen atom of the side-chain and a ring hydrogen, with the result that the cis compound thus formed shows a considerably degraded spectrum. In contrast, an unhindered cis double bond involves a relatively slight change in the all-trans spectral curve.

We have now observed that the three trans compounds mentioned which are easily synthesized according to Kuhn and Winterstein,3 can be rearranged to yield all expected *cis* forms (Figs. 1–3)

⁽²²⁾ F. G. Fisher, H. Dull and L. Ertel, Ber., 65, 1467 (1932).

⁽²³⁾ H. A. Iddles, A. W. Low, B. D. Rosen and R. T. Hart, Ind. Eng. Chem., Anal. Ed., 11, 102 (1939).

and A. L. LeRosen, ibid., 64, 2755 (1942); L. Zechmeister and J. H. Pinckard, ibid., 76, 4144 (1954); cf. L. Zechmeister, Experientia, 10, 1 (1954).

⁽²⁾ J. Dale and L. Zechmeister, This Journal, 75, 2379 (1953).

⁽³⁾ R. Kuhn and A. Winterstein, Helv. Chim. Acta, 11, 116 (1927).

Fig. 1.—Skeleton models of the two stereoisomeric dibiphenylenehexatrienes: top, trans; bottom, 3-cis.

Fig. 2.—Skeleton models of the two stereoisomeric biphenylenephenylbutadienes: top, trans; bottom, 3-cis.

when submitted to some reversible thermic or photochemical treatments. The zones of the chromatographically separated individual isomers are best observed in ultraviolet light. All cis forms appeared below the corresponding trans zone, and this weakening of the adsorption affinity was especially marked in the presence of a hindered cis double bond. Iodine-catalyzed equilibria contained 93–98% trans form in agreement with some data obtained in the diphenylpolyene series. For preparative purposes a brief fusion of trans crystals was the preferred procedure.

As expected, no cis peaks⁴ appeared in the spectral curves, since $trans \rightarrow cis$ rearrangements do not alter the straight over-all shape of the aliphatic conjugated system in this type of compound.

1,6-Di-biphenylenehexatriene yielded a crystalline cis form. As shown in Fig. 4 this trans \rightarrow cis (4) L. Zechmeister and A. Polgår, This Journal, 65, 1522 (1943); L. Zechmeister, A. L. LeRosen, W. A. Schroeder, A. Polgår and L. Pauling, ibid., 65, 1940 (1943).

Fig. 3.—Skeleton models of the four stereoisomeric biphenylenephenylhexatrienes: A, all-trans; B, 3-monocis (configuration assigned to "cis-I"); C, 5-monocis (assigned to "cis-II"); and D, 3,5-di-cis (assigned to "cis-III").

rearrangement caused a relatively slight decrease in the fine structure of the main band and only a slight shift of the maxima toward shorter wave lengths.

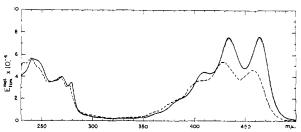
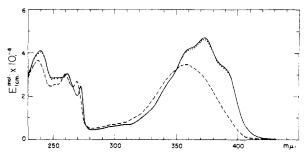



Fig. 4.—Molecular extinction curves of di-biphenylene-hexatrienes (in cyclohexane): ——, fresh solution of the *trans* form; -----, fresh solution of the *cis* form; and, mixture of the stereoisomers after iodine catalysis (the dotted line differs from the full line only in the region of the main maxima).

1-Biphenylene-4-phenylbutadiene gave an oily cis isomer whose main spectral band was void of fine structure (Fig. 5). In the absence of solvents this relatively labile isomer rearranged, even in darkness, to give the crystalline trans form. Its behavior is analogous to that of monocis-diphenylbutadiene.¹

1-Biphenylene-6-phenylhexatriene was converted into the three expected crystalline *cis*

-Molecular extinction curves of biphenylene--, fresh solution of the phenylbutadienes (in hexane): trans form; -----, fresh solution of the cis form; and, mixture of the stereoisomers after iodine catalysis.

forms, termed, in the order of decreasing adsorption affinities, cis-I, II and III. Their configurations have been established as follows. The main spectral band of cis-I showed a considerable degree of fine structure and, furthermore, only a slight difference in the position of its maxima from that of the trans form. It clearly represents the only possible unhindered cis member of this set, i.e., the 3-monocis isomer (B, Fig. 6). The cis-II and III are hindered forms, and no fine structure appears in their curves. Considering the larger shift in the position of the maxima and the lower extinction values, we have assigned to cis-III the 3,5dicis configuration (D, Fig. 6); this leaves the 5-monocis configuration (C) for cis-II.

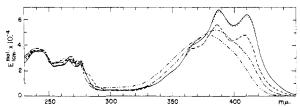


Fig. 6.-Molecular extinction curves of biphenylenephenylhexatrienes (in hexane): ----, fresh solution of the all-trans form; -----, fresh solution of 3-monocis ("cis-I"); ----, fresh solution of 5-monocis ("cis-II"); -----, fresh solution of 3,5-di-cis ("cis-III"); and ..., mixture of the stereoisomers after iodine catalysis.

The latter assignments have been confirmed in the following manner. Upon iodine catalysis of cis-III under unusually mild conditions and subsequent chromatography the recovered stereoisomeric mixture was found to be composed of cis-I to the extent of 80%. As had been pointed out by Lunde and one of the writers, hindered cis double bonds respond to iodine catalysis much more rapidly than do unhindered such bonds. In the present instance the process may be formulated as: 3,5-dicis \rightarrow 3-monocis \rightarrow all-trans. The hindered 5-monocis form did not appear in such experiments, and we obtained it exclusively from the all-trans compound.

With respect to relative stabilities the following statements valid for the three sets can be made (Tables I-III). Under the conditions of refluxing in darkness the trans and cis configurations are practically equally resistant. However, the cis forms, especially the hindered ones, are markedly

more photo-sensitive than the corresponding trans compound. With reference to the melting points it was noted that unhindered cis forms melted somewhat higher but hindered ones considerably lower than the (all-)trans isomer.

Experimental

Materials and Methods.—The following adsorbents were used: a 2:1 mixture of lime (Sierra, Superfine, U. S. Lime Prod.) and Celite (No. 545, Johns-Manville), a 3:1:1 mixture of alumina (Alcoa -80 mesh, reground to -200 mesh), lime and Celite, a 3:1 mixture of magnesia (Seasorb 43 Food, Mach., and Chem. Corp.) and Celite, and a 3:1:1

mixture of magnesia, lime and Celite.

As an ultraviolet light source a Photoflood bulb No. 1 was used, equipped with a molded Corning light filter No. 5840. Photoisomerizations were effected using the same bulb without the filter. Iodine catalyses (iodine = 1-2%of the substance) were carried out by illuminating with two 120-cm. long 3500° Mazda lamps (40 watt; white and yellowish). The mol. extinction coefficients given represent the average of at least two independent experiments. When direct weighings were not possible, the concentrations were determined upon iodine catalysis, and for the calculations the extinction coefficient of the resulting equilibrium mixture was used as known from a parallel experiment with a weighed trans sample.

Photometric readings were taken on fresh solutions with Cary recording spectrophotometer, model 11M, using optical grades of solvents. Solvents were removed in vacuo. Melting of crystals was carried out in a brass block, while the melting points (cor.) refer to an electrically heated Berl

block.

The ratios of the isomers in the various stereoisomeric mixtures of di-biphenylenehexatriene and biphenylenephenylbutadiene were determined from spectral data of the mixtures with the aid of Fig. 7.

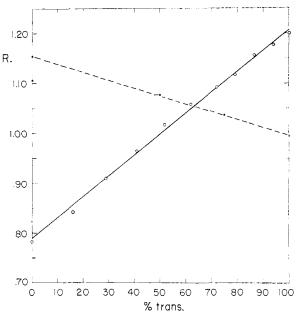


Fig. 7.—Full line, biplienylenephenylbutadiene; dependence of the ratio R, extinction at 375 m μ /extinction at 358 m_{μ} (in hexane) on the composition of artificial mixtures of the cis and trans forms. Dashed line, di-biphenylenehexatriene; dependence of the ratio, extinction at maximum in the range 428-434 m μ /extinction at maximum in the range $458-465 \text{ m}\mu$ (in cyclohexane) on the composition of artificial mixtures of the cis and trans forms.

Microanalyses were carried out by Mr. G. A. Swinehart in Dr. A. J. Haagen-Smit's laboratory. trans-Di-biphenylenehexatriene (Cf. Table I).—The brownish condensation product from fluorenone and dihydromuconic acid was purified on lime-Celite (developer, benzene) which eliminated a blue top zone. The crystals thus obtained were red-orange and melted at 331.5-333°; $E_{\text{lcm.}}^{\text{mol}}$ 7.65 × 10⁴ at λ_{max} 465 m μ (in cyclohexane).

Anal. Calcd. for C₃₀H₂₀: C, 94.70; H, 5.30. Found: C, 94.30; H, 5.82.

TABLE I

RATIO OF THE trans AND cis FORMS IN STEREOISOMERIC MIXTURES OF DI-BIPHENYLENEHEXATRIENES

Steric form treated	Treatment	Ratio, trans: cis in-recov. subst.	Loss (% of starting material)
trans	Iodine cat.ª	96:4	0
trans	$Irradiation^b$	90:10	0
trans	Refluxing ^c	No effect	
trans	Heating soln.d	83:17	1
trans	Melting cryst.	84:16	2 6
cis	Iodine cat.	97:3	20
cis	Iodine cat.g	90:10	11
cis	Irradiation ^h	81:19	12
cis	Insolation i	97:3	14
cis	Refluxing ^c	No effect	
cis	Heating soln.d	86:14	No estim.
cis	Melting cryst."	57:43	No estim.

 a 15 min. at 60 cm. from light source (quartz cell). b 20 min. at 10 cm. from Photoflood bulb (quartz). c Cy clohexane solution refluxed in the dark for 60 min. ^d Diphenyl ether solution; 200°, 15 min. (oil-bath). ^e Kept for 5 sec. just above the m.p. ^f 20 min. at 60 cm. from light source (quartz). ^h 60 min. at 10 cm. from Photoflood bulb (Pyrex

cis-Di-biphenylenehexatriene.—Ten mg. of the trans compound was melted in an evacuated tube for 10 sec. and cooled immediately in an ice-bath. After dissolving the substance in the minimum amount of benzene, 0.5 vol. of hexane was added, and the solution chromatographed (50 × 4.5 cm.; alumina-lime-Celite; benzene) (the figures on the left denote thickness of zones in mm.; the colors were observed in ultraviolet light):

- empty section
- dark red (trans) 110
- pale red (cis)
- empty section

The cis zone was cut out and eluted with benzene + 10%alcohol, then washed alcohol-free and dried. On removal of the benzene orange-colored crystals appeared that were taken up in the minimum amount of benzene, diluted with vol. of hexane and developed with benzene on line-Celite $(30 \times 2.5 \text{ cm.})$:

- empty section
- 25red (trans)
- 15 interzone
- pale red (cis)
- 195 empty section

The 35-mm. zone yielded, upon recrystallization from hot benzene, 0.6 mg. of the cis form, m.p. 333-335°, $E_{1 \, \mathrm{cm}}^{\mathrm{mol}}$, 5.44 \times 104 at λ_{max} 458.5 m μ (in cyclohexane). In all 8 mg. of pure crystals were obtained.

Anal. Calcd. for $C_{30}H_{20}$: C, 94.70; H, 5.30. Found: C, 95.19; H, 5.17.

trans-Biphenylenephenylbutadiene (Cf. Table II).—Recrystallization from chloroform yielded fine yellow needles which were chromatographically pure (magnesia-Celite; benzene), m.p. 150.5-151°; $E_{1~\rm em}^{\rm mol}$ 4.7 \times 104 at $\lambda_{\rm max}$ 373 $m\mu$ (in hexane).

Anal. Calcd. for $C_{22}H_{16}$: C, 94.24; H, 5.76. Found: C, 94.33; H, 5.86.

cis-Biphenylenephenylbutadiene.—After melting 500 mg. of the trans form in an evacuated tube at 345° for 75 sec., the tube was cooled rapidly, the contents were dissolved in

TABLE II

RATIO OF THE trans AND cis FORMS IN STEREOISOMERIC MIX-TURES OF BIPHENYLENEPHENYLBUTADIENES

Steric form		Ratio, trans: cis in recov.	Loss (% of starting
treated	Treatment	subst.	material)
trans	Iodine cat.a	98.5:1.5	11
trans	$Irradiation^b$	No effect	
trans	Insolation c	No effect	
trans	Heating soln.d	No effect	
trans	Melting cryst."	90:10	19
cis	Iodine cat."	98:2	1
cis	$Irradiation^g$	81:19	1
cis	Insolation ^h	96:4	1
cis	Refluxing i	No effect	

^a 1 min. at 60 cm. from light source (Pyrex flask). ^b 15 min. at 5 cm. from Photoflood bulb (Pyrex). Intense suilight for 2 hr. (Pyrex). Maplithalene solution heated for 20 min. at 140° (oil-bath). 70 sec. at 345°. Maplithalene solution heated for 200 cm. from light source (quartz); conen. much lower than in ref. a. \$90 min. at 15 cm. from Photoflood bulb. Intense sunlight for 5 min. (quartz). Hexane solution refluxed in the dark for 30 min.

the minimum amount of benzene and developed with the same solvent on a 30 \times 7.5 cm. magnesia–Celite column:

- vellow
- interzone
- dark red (trans)
- interzone
- pale red (cis) pale blue
- empty section

The cis zone was eluted with benzene + 10% alcohol, the alcohol was washed out and after drying the solvent removed. The oily residue, combined with that from a 200mg. experiment, was dissolved in benzene + hexane (1:1) and developed with a 3:1 mixture on magnesia-lime-Celite $(35 \times 3.3 \text{ cm.})$:

- yellow
- 18 interzone
- 25dark red (trans)
- 38 interzone
- 10 blue
- 50 interzone
- pale red (cis) pale blue 107
- empty section

We obtained from the 107-mm. zone 72 mg. of the yellowish, oily cis compound. Its solutions were fairly stable in darkness. The concentrations were determined upon iodine $E_{1 \text{ cm}}^{\text{mol}} 3.46 \times 10^4 \text{ at } \lambda_{\text{max}} 357.5 \text{ m}\mu\text{(in hexane)}.$ In the absence of solvents, however, crystals of the trans compound started to appear within a few hours, even at 20°, in darkness. Hence, in the time necessary for drying an analytical sample almost complete isomerization was unavoidable and the first of the following analyses refers to such a mixture; for the second one a sample was recrystallized from ethanol.

Anal. Calcd. for C₂₂H₁₆: C, 94.24; H, 5.76. Found: C, 94.52, 94.23; H, 5.45, 5.70.

All-trans-biphenylenephenylhexatriene (Cf. Table III).-The phenylpentadienal (which was then condensed with fluorene) was prepared according to Jones, et al.⁵ Several minor contaminants were eliminated from the product by chromatographing on magnesia–Celite. Large yellowish-orange needles, m.p. 156–157°; $E_{1\,\mathrm{cm.}}^{\mathrm{mol}}$ 6.78 imes 104 at λ_{max} 388 m μ (in hexane).

Anal. Calcd. for $C_{24}H_{18}$: C, 94.08; H, 5.92. Found: C, 93.80; H, 6.17.

3-cis-Biphenylenephenylhexatriene ("cis-I").—A 50-mg. all-trans sample was melted and kept at 275-280° for 30

⁽⁵⁾ E. Barraclough, J. W. Batty, I. M. Heilbron and W. E. Jones, J. Chem. Soc., 1549 (1939).

sec., then cooled rapidly and dissolved in the minimum amount of benzene. One volume of hexane was added and the solution developed on alumina-lime-Celite (45 imes 4.5 cm.) with benzene: hexane (2:1):

243 empty section 135 dark red (all-trans) interzone pale red (cis-I) empty section

A thin zone containing the cis-II and -III was washed into The cis-I zone was eluted with benzene +5%alcohol and the solvents were removed to yield a yellow, powdery residue. The combined yields of *cis*-I obtained as described from 250 mg of the *trans* form were dissolved in benzene and developed on magnesia-Celite (30 imes 4.5 cm.) with benzene +3% alcohol:

- empty section
- 41 dark red (all-trans, mostly formed de novo)
- 14 interzone
- 63 red(cis-I)
- 87 empty section

The cis-I fraction was recrystallized from hot benzene by dropwise addition, with stirring, of methanol; yield 25 mg. of yellow needles, in.p. 165.5-167°; $E_{1 \text{ em.}}^{\text{nol}}$ 5.67 \times 104 at λ_{max} 385.5 in μ (in liexane).

Anal. Calcd. for $C_{24}H_{18}$: C, 94.08; H, 5.92. Found:

C, 94.10; H, 5.76.
5-cis-Biphenylenephenylhexatriene ("cis-H").—Three 100-ing. portions of the all-trans compound were melted, kept at 270-275° for 30 sec., then cooled rapidly, dissolved in benzene and developed with benzene + 8% acetone on maguesia-Celite ($45 \times 4.5 \text{ cm.}$):

- empty section
- 120 dark red (all-trans + some cis-I)
- 113 interzone
- red (cis-II)
- 6 interzone
- 31 pale red (cis-III)
- 101 empty section

After elution the cis-II isomer was rechromatographed on a similar column using benzene +9% acctone as the developer; thus, some trans compound was eliminated; yield 8.3 mg, of pale yellow flat prisms, m.p. 122–123.5°; $E_{1 \, \mathrm{cm}}^{ao1}$ 5.25 \times 104 at $\lambda_{\rm max}$ 385 m μ (in hexang). For analysis the sample was recrystallized from ethanol.

Anal. Caled. for C24H18: C, 94.09; H, 5.92. Found: C, 93.89; H, 6.06 (corrected for 0.35% ash).

TABLE III Ratios of the trans and cis Forms in Stereoisomeric Mix-TURES OF BIPHENYLENEPHENYLHEXATRIENE

Steric form treated	Trea t inent	Ratio in recovered substance trans:cis-1:cis-II :cis-III	Loss (% of starting ma- terial)
trans	Iodine cat."	92:8:trace:trace	18
trans	$Irradiation^b$	No effect	
trans	Insolation ^c	No effect	
trans	$Refluxing^d$	No effect	
trans	Melting cryst."	78.5:16.5:4:1	21
cis-I	Iodine cat."	94:6:trace:trace	23
cis-I	Irradiation b	2:98:0:0	1
cis-I	Insolation.(34:66:0:0	1
cis-I	Refluxing d	No effect	
cis-II	Iodine cat."	~99:~1:0:0	26
cis-II	1rradiation ^g	3:0:97:0	1
cis-II	Refluxing d	No effect	
cis-III	Iodine cat."	20:80:0:0	24
cis-III	Irradiation ^a	\sim 0: \sim 7:0:93	1
cis-III	Refluxin \mathbf{g}^d	No effect	

^a 2 min. at 60 cm. from light source (Pyrex flask). ^b 60 nin. at 10 cm. from Photoflood bulb (Pyrex). c 120 min. in moderately intense sunlight (Pyrex). d Hexane solution refluxed for 30 min. in the dark. d 30 sec. at 320°. f 20 min. in intense sunlight (Pyrex). d 30 min. at 10 cm. from Photoflood bulb (Pyrex). d 30 min. at 200 cm. from light source (quartz cell); iodine 0.1% of substance.

3,5-Di-cis-biphenylenephenylhexatriene ("cis-III").-The cis-III fraction from the above column was combined with that obtained from 200 mg. of the all-trans form and developed with benzene + 9% acctone on magnesia-Celite $(20 \times 3.5 \text{ cm.})$:

- 11 empty sections 10 red (all-trans)
- 6-1 interzone
- 23 pale red (cis-II) 10 interzone
- red (cis-III)
- empty section

Yield 3.8 mg. of pale yellow crystals, m.p. 118.5-121°, $E_{\rm tent.}^{\rm mol}$ 4.83 \times 104 at $\lambda_{\rm max}$ 379 m μ (in hexane).

PASADENA, CALIFORNIA

[Contribution from the Research Laboratories, Chemical Division, Merck & Co., Inc.]

Synthesis of 8-Hydroxy-2-keto-5-methoxy-4a-methyl-2,3,4,4a,9,10-hexahydrophenanthrene

By William F. Newhall, 1 Stanton A. Harris, Frederick W. Holly, Eileen L. Johnston, John W. RICHTER, EDWARD WALTON, ANDREW N. WILSON AND KARL FOLKERS

RECEIVED MAY 4, 1955

8-Hydroxy-2-keto-5-methoxy-4a-methyl-2,3,4,4a,9,10-hexahydrophenanthrene has been prepared as a potential intermediate for the synthesis of 11-oxygenated steroids. The reactions used to convert 5-hydroxy-8-methoxytetralone-1 to 5-hydroxy-8-methoxy-1-methyltetralone-2 offer a general method for the synthesis of hydrophenanthrenes. The Robinson-Mannich base reaction to form the potential ring A has been broadened to include the use of aqueous reaction media.

This paper describes the synthesis of 8-hydroxy-2 - keto - 5 - methoxy - 4a - methyl - 2,3,4,4a,9,10 - hexahydrophenanthrene (XIX) and some related compounds. The method of synthesis was based in part on the previously described² preparation of 8chloro-4a-ethyl-2-keto-5,6-dimethoxy-2,3,4,4a,9,-

10-hexahydrophenanthrene, a potential intermediate for the synthesis of morphine. Syntheses of the rather similar steroid intermediates, 8-hydroxy-2-keto - 4a - methyl - 2,3,4,4a,9,10 - hexahydrophenanthrene³ and 2-keto-5,8-dimethoxy-4a-methyl-2,3,4,4a,9,10-hexahydrophenanthrene4 (XVIII) through somewhat different approaches have been

⁽i) University of Florida, Citrus Experiment Station, Lake Alfred, Fla.

⁽²⁾ R. Ghosh and R. Robinson, J. Chem. Soc., 506 (1944).

⁽³⁾ J. W. Cornforth and R. Robinson, ibid., 1855 (1949).

⁽⁴⁾ C. A. Crob and W. Jundt, Helv. Chim. Acta, 31, 1691 (1948).